
The endocannabinoid system as a target for novel anxiolytic 
drugs

Sachin Patel1,2,3,4, Mathew N. Hill5,6,7, Joseph F. Cheer8, Carsten T. Wotjak9, and Andrew 
Holmes10,*

1Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 
Nashville, USA

2Vanderbilt Brain Institute, Vanderbilt University, Nashville, USA

3Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 
Nashville, USA

4Vanderbilt Kennedy Center for Human Development, Vanderbilt University Medical Center, 
Nashville, USA

5Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada

6Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, 
Canada

7Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, 
Canada

8Department of Anatomy and Neurobiology and Department of Psychiatry, University of Maryland 
School of Medicine, Baltimore, MD, USA

9Max Planck Institute of Psychiatry, Department of Stress Neurobiology & Neurogenetics, Munich, 
Germany

10Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and 
Alcoholism, National Institutes of Health, Bethesda, MD, USA

Abstract

The endocannabinoid (eCB) system has attracted attention for its role in various behavioral and 

brain functions, and as a therapeutic target in neuropsychiatric disease states, including anxiety 

disorders and other conditions resulting from dysfunctional responses to stress. In this mini-

review, we highlight components of the eCB system that offer potential ‘druggable’ targets for 

new anxiolytic medications, emphasizing some of the less well-discussed options. We discuss how 

selectively amplifying eCBs recruitment by interfering with eCB-degradation, via fatty acid amide 
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hydrolase (FAAH) and monoacylglycerol lipase (MAGL), has been linked to reductions in 

anxiety-like behaviors in rodents and variation in human anxiety symptoms. We also discuss a 

non-canonical route to regulate eCB degradation that involves interfering with cyclooxygenase-2 

(COX-2). Next, we discuss approaches to targeting eCB receptor-signaling in ways that do not 

involve the cannabinoid receptor subtype 1 (CB1R); by targeting the CB2R subtype and the 

transient receptor potential vanilloid type 1 (TRPV1). Finally, we review evidence that cannabidiol 

(CBD), while representing a less specific pharmacological approach, may be another way to 

modulate eCBs and interacting neurotransmitter systems to alleviate anxiety. Taken together, these 

various approaches provide a range of plausible paths to developing novel compounds that could 

prove useful for treating trauma-related and anxiety disorders.
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Introduction

The eCB system and drugs that act on it continues to attract enormous attention from the 

scientific community and general public for its contribution to behavioral and brain 

functions, and for its potential as a therapeutic target across an array of peripheral and 

neuropsychiatric disease states. This trend is evident against a background of an ever 

developing understanding of the biology of cannabinoidergic actions, as well as public 

policy shifts towards greater acceptance of eCB-acting drugs for both recreational and 

medicinal purposes. In fact, interest in the therapeutic properties of the Cannabis sativa plant 

for all manner of ailments has a history that dates back millennia. In more recent times, the 

era of studying the plant for its medicinal properties can be traced to the identification of 

Delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) as the plant’s main active 

constituents and to the discovery of cannabinoid receptors and the endogenous substances 

(eCBs) acting on them, throughout the brain and body (Mechoulam and Parker, 2013).

The intervening half-century has seen important advances in medicinal exploitation of the 

eCB system, such that there are now a number of cannabinoid-acting compounds which are 

clinically approved to treat low appetite, nausea, vomiting, pain, and spasticity in cancer, 

AIDS and multiple-sclerosis, among other indications, with active research into developing 

drugs for a variety of other conditions. One area of particular interest to preclinical and 

clinical research on the eCB system is that relating to fear, anxiety and stress, and their 

associated psychiatric conditions, including the Anxiety Disorders and Posttraumatic Stress 

Disorder (PTSD, now diagnostically categorized as Trauma and Stress-related Conditions 

(DSM-5, 2013). These disorders represent by far the most common mental health problems, 

are often intertwined with other problems, such as alcohol and substance abuse. 

Unfortunately, they remain inadequately served by existing therapeutic, particularly 

pharmaceutical, options (Griebel and Holmes, 2013).

Several clinical observations have pointed to a link between stress-related disorders and 

cannabis use. For example, PTSD patients are more likely to exhibit cannabis dependence 
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(Bonn-Miller et al., 2007; Kessler et al., 1995; Stewart et al., 1998), suggesting a degree of 

co-morbidity between PTSD and cannabis use. Epidemiology data such as these cannot 

clarify whether this link reflects shared etiological factors or cannabis use as a form of self-

medication, though it is worth noting that symptom severity correlates with the reported 

motivation to use cannabis in order to cope with emotional distress (Bonn-Miller et al., 

2007). There is also preliminary data indicating that cannabis and related compounds can 

manage PTSD symptoms related to hyperarousal, anxiety responses to exteroceptive triggers 

and situational trauma-reminders (Bremner et al., 1996; Jetly et al., 2015). While these 

clinical observations need to be substantiated in larger, replicate populations, they do hint at 

stress and anxiety-alleviating effects of cannabis. In fact, cannabis has long been anecdotally 

noted for its ability to reduce anxiety and elevate mood in non-clinical populations and, in 

part because of this, eCBs have attracted considerable interest in recent years as a target for a 

new class of drugs to treat anxiety and stress-related conditions (Figure 1).

Comprehensive overviews of the large literature that has now built up around the potential 

clinical utility of eCB-targeting drugs can be found in previously published reviews from our 

groups and others (Gunduz-Cinar et al., 2013a; Lee et al., 2016; Micale et al., 2013; Morena 

et al., 2016b; Zlebnik and Cheer, 2016). Our aim in this mini-review is to highlight various 

components of the eCB system that offer ‘druggable’ targets for new anxiolytic and 

antidepressant medications, and to emphasize some of the less well-discussed options that 

nonetheless represent exciting possibilities for drug development (Figure 2). We begin with 

the intriguing concept of selectively amplifying recruitment of eCBs by interfering with the 

molecular machinery responsible for eCB-degradation. We discuss this approach with 

reference to the two canonical eCB hydrolyzing enzymes, fatty acid amide hydrolyze 

(FAAH) and monoacylglycerol lipase (MAGL), but also in terms of the less well-known 

mechanism mediated by cyclooxygenase-2 (COX-2). We then turn to eCB receptor-signaling 

with a view to drawing focus away from the vast literature on the cannabinoid receptor 

subtype 1 (CB1R) to other important receptors, most notably the transient receptor potential 

vanilloid receptor type 1 (TRPV1). Finally, we consider the nascent but interesting potential 

for modulating eCBs and interacting neurotransmitter systems via a major constituent of 

cannabis, cannabidiol (CBD).

FAAH and MAGL: the Yin and the Yang of eCB hydrolysis

While the biosynthesis of AEA has remained enigmatic for some time, the canonical 

pathways of AEA metabolism have been well described for over a decade. First 

characterized by Cravatt and colleagues as an enzyme which metabolizes oleamide (Cravatt 

et al., 1996), FAAH is a membrane-bound serine hydrolase which hydrolyzes a large class of 

fatty acid amides, including AEA. FAAH is primarily tethered to the membrane of the 

endoplasmic reticulum and is widely distributed throughout the brain, with prominent 

expression in the post-synaptic compartment of large pyramidal-like neurons (Gulyas et al., 

2004; Thomas et al., 1997; Tsou et al., 1998). As genetic or pharmacological inactivation of 

FAAH results in a dramatic elevation in tissue levels of AEA, but not 2-AG, FAAH is 

considered as the primary metabolic enzyme of AEA.
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It has been well established that inhibition of FAAH, and elevation of AEA signaling, can 

significantly attenuate behavioral indices of fear and anxiety-related behavior in rodents. 

Following the characterization of the first relatively selective FAAH inhibitor, URB597, 

Piomelli’s group established over a decade ago that inhibition of AEA hydrolysis produces 

anxiolytic-like effects in rats (Kathuria et al., 2003). Follow-up studies over the following 

several years demonstrated that there was an intriguing degree of specificity to these effects, 

such that gene deletion or selective pharmacological inhibition of FAAH, produced 

anxiolytic-like effects more reliably under conditions of high environmental aversiveness 

(Bluett et al., 2014; Carnevali et al., 2015; Gray et al., 2015; Haller et al., 2014; Haller et al., 

2009; Hill et al., 2013b; Lomazzo et al., 2015; Naidu et al., 2007; Patel and Hillard, 2006; 

Rossi et al., 2010).

While a mechanistic explanation of why FAAH inhibition only exerts anxiolytic effects 

under highly aversive conditions remains elusive, the current working model posits that 

rather than directly producing frank anxiolytic-like effects, AEA signaling acts to restore 

homeostasis in anxiety-mediating circuits following stress-challenge. Specifically, under 

conditions of stress, FAAH activity has been found to be rapidly increased in brain regions 

regulating anxiety, such as the amygdala, with a concomitant reduction in the signaling pool 

of AEA (Bluett et al., 2014; Gray et al., 2015; Hill et al., 2013b; Patel et al., 2005; 

Rademacher et al., 2008). Accordingly, it appears that the reduction in AEA signaling in 

response to aversive environmental conditions acts to promote the development of an 

anxiety-like state, whereas inhibition of FAAH, and resultant potentiation of AEA signaling, 

acts to normalize AEA signaling and produce an associated reduction in anxiety-like 

behavior (for further discussion, see Gunduz-Cinar et al., 2013a; Morena et al., 2016b). 

From a therapeutic standpoint, the potential for increasing AEA, via FAAH inhibition, to 

preferentially modulate states of high anxiety could provide a therapeutic approach that 

selectively targets pathological forms of anxiety, without attendant side-effects (e.g., 

cognitive impairment, abuse-liability) that characterize many conventional anxiolytics.

The translational relevance of FAAH/AEA signaling to anxiety in humans is finding support 

from a variety of sources. Firstly, a number of studies have detected reduced levels of AEA 

in patients suffering from stress-related psychiatric illnesses, including major depression 

(Hill et al., 2009) and PTSD (Neumeister et al., 2013). Across individual patients, relatively 

low circulating levels of AEA correlate with higher scores on measures of anxiety in major 

depression (Hill et al., 2008) and the degree of intrusive symptoms in PTSD (Hill et al., 

2013a). Secondly, a genetic variant in the human FAAH gene has been identified that 

destabilizes FAAH protein, reduces FAAH-mediated AEA hydrolysis and enhances AEA 

signaling (Boileau et al., 2015; Chiang et al., 2004; Cravatt et al., 2001; Dincheva et al., 

2015; Sipe et al., 2002; Sipe et al., 2010). This polymorphism (385A allele; rs324420) has 

been repeatedly associated with reduced indices of trait anxiety, as well as enhanced 

corticoamygdala connectivity and reduced activation and accelerated habituation of 

amygdala blood-oxygen-level dependent (BOLD) responses to threat cues (Demers et al., 

2016; Dincheva et al., 2015; Gee et al., 2016; Gunduz-Cinar et al., 2013b; Hariri et al., 

2009).
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These epidemiological and genetic data indicate that genetically-driven augmentation of 

AEA signaling confers a phenotype of reduced anxiety and propose a plausible neural basis 

for this influence. Indeed a key role for the amygdala would be entirely consistent with 

rodent studies that identify the basolateral amygdala as a critical locus in FAAH-mediated 

regulation of fear and anxiety-like behavior (Dincheva et al., 2015; Gunduz-Cinar et al., 

2013b; Gunduz Cinar et al., 2015). Taken together, these convergent lines of human and 

rodent data evidence strengthen the case for examining FAAH inhibition as a tractable 

approach to alleviating anxiety and a number of pharmaceutical companies have been 

actively engaged in clinical trials that will testing the viability of this mechanism.

While a substantive body of evidence has amassed on the link between AEA signaling and 

anxiety, much less is currently known about 2-AG. Unlike AEA, however, the enzymatic 

cascades involved in both the biosynthesis and degradation of 2-AG are both relatively well 

characterized, with diacylglycerol lipase (DAGL) being the primary enzyme involved in 

synthesis, and MAGL being the primary enzyme involved in hydrolysis of 2-AG. Moreover, 

chronic unpredictable stressors have been shown to impair 2-AG signaling (Hill et al., 2005; 

Zhang et al., 2015) and selective inhibitors of MAGL have been developed and examined for 

their potential anxiety-related effects. The work that has been conducted to date has revealed 

that augmentation of 2-AG signaling through MAGL inhibition produces anxiolytic-like 

effects that, similar to the effects of FAAH inhibitors, are particularly prominent or entirely 

restricted to conditions of high environmental aversiveness – possibly reflecting the on-

demand synthesis of 2-AG that is augmented by exposure to stress (Aliczki et al., 2012; 

Aliczki et al., 2013; Busquets-Garcia et al., 2011; Sciolino et al., 2011; Sumislawski et al., 

2011; Zhang et al., 2015). However, there are some reports that MAGL inhibitors fail to 

affect anxiety-like behavior (Lomazzo et al., 2015) and that heightened emotional arousal 

can impair anxiolytic-like effects of MAGL inhibitors administered directly into the 

basolateral amygdala (Morena et al., 2016a). Further complicating the picture, MAGL 

inhibition has been found to disrupt, rather than promote, initial fear extinction acquisition 

(Hartley et al., 2016) and augment fear expression via 2-AG-mediated agonism of CB1R on 

GABAergic neurons (Llorente-Berzal et al., 2015).

In an illustrative example of the effects of MAGL inhibition, mice which develop a 

pathological-like form of anxiety-like behavior following repeated social defeat stress, were 

found to exhibit deficient 2-AG mediated plasticity in the nucleus accumbens and that 

administration of a MAGL inhibitor can normalize this behavioral phenotype as well as 2-

AG mediated synaptic plasticity in the nucleus accumbens (Bosch-Bouju et al., 2016). 

Conversely, in mice with genetic deletion of DALG and reductions in 2-AG signaling, 

increases in anxiety-like behavior are evident (Jenniches et al., 2016; Shonesy et al., 2014). 

Collectively, this indicates that 2-AG signaling is also a regulator of emotional behavior, 

whereby amplification of 2-AG signaling can attenuate anxiety-related readouts, particularly 

after exposure to stressful stimuli.

What then, if any, is the link between 2-AG, MAGL and stress relevant readouts in humans? 

While functional variants in the human MAGL gene have yet to be identified, two 

independent studies have now both reported that 2-AG levels are reduced in individuals with 

major depression (Hill et al., 2008; Hill et al., 2009) and another study found that low 

Patel et al. Page 5

Neurosci Biobehav Rev. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



circulating 2-AG levels predict rates of depression after cardiac surgery (Hauer et al., 2012). 

Reduced circulating 2-AG has also been found in patients with PTSD (Hill et al., 2013a) 

(though for the opposite effect, see Hauer et al., 2013). Finally, a recent study found that 

healthy volunteers exposed to chronic stressors exhibited progressively diminished 

circulating 2-AG levels, which correlated with the onset of reductions in measures of 

positive emotion (Yi et al., 2016).

Thus, there is emerging support for a relationship between 2-AG and stress-related indices in 

humans, as well as rodents, suggesting MAGL inhibition may be another therapeutic avenue 

for the treatment of anxiety disorders and other conditions associated with adverse responses 

to stressors. Enthusiasm for this mechanism is tempered somewhat by the ability of chronic, 

high-dose MAGL inhibition to desensitize the CB1R and produce a phenotype that is more 

akin to CB1R antagonism than agonism (Schlosburg et al., 2010; Schlosburg et al., 2014). 

Although CB1R desensitization is not seen at lower doses of MAGL inhibitors (Feliszek et 

al., 2016; Kinsey et al., 2013), the parameters and kinetics by which MAGL inhibition can 

regulate 2-AG signaling and CB1R efficacy clearly remains an important issue to be 

resolved before moving forward clinically with this target.

COX-2: an alternate route to eCB degradation

While FAAH and MAGL represent canonical inactivation mechanisms for AEA and 2-AG, 

respectively, several non-canonical eCB-inactivation pathways have recently been described, 

including lipoxygenase and p450 enzymes (Urquhart et al., 2015; Zelasko et al., 2015). 

Here, we discuss emerging data that one of these pathways, COX-2, regulates eCB signaling 

at the synaptic, neurochemical and behavioral level in a manner that only partially overlaps 

with FAAH and MAGL inhibition (Hermanson et al., 2014; Hermanson et al., 2013), but 

nonetheless may have a role in the mediation of anxiety-like behavior and stress-responsivity 

(Gamble-George et al., 2016; Hermanson et al., 2013).

COX-2 is the immediate-early gene product of prostaglandin synthase-2 (PTGS2) expressed 

in an activity-dependent manner in many tissues, including neurons (Kaufmann et al., 1996). 

The role of COX-2 inhibition in regulating anxiety-like behaviors has in many cases been 

ascribed to reductions in pro-inflammatory prostaglandins. However, acute exogenous 

administration of prostaglandin E2 and D2 have been shown to have anxiolytic-like actions 

(Suzuki et al., 2011; Zhao et al., 2009), and prostaglandin E2 receptor null mutant mice 

exhibit reduced anxiety-like behavior (Savonenko et al., 2009). These data indicate a 

complex and currently incomplete picture of how COX-2 regulates anxiety-like processes; in 

addition, it seems likely that the effects and mechanisms of action COX-2 inhibition could 

depend on duration of treatment and endogenous inflammatory state.

With regards to the link between COX-2 and eCBs, COX-2 is primarily expressed 

postsynaptically and localizes to dendritic spines and dendrites in an expression pattern 

strikingly similar to that of FAAH (Cristino et al., 2008). COX-2 plays a critical role in 

generating prostaglandins via oxidation of arachidonic acid (AA), but has also been shown 

to utilize 2-AG and AEA as substrates to generate prostaglandin-glycerol (PG-G) and 

prostaglandin ethanolamide (PG-EA), respectively (Kozak et al., 2002; Kozak et al., 2000). 
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Importantly, inhibition of COX-2 causes accumulation of eCBs as revealed, firstly, by 

increases in the tissue content of AEA and, to a lesser degree, 2-AG and, secondly, by 

enhanced eCB-mediated retrograde synaptic suppression - in the form of depolarization-

induced suppression of inhibition (DSI) and tonic eCB-suppression of glutamate release 

(Hermanson et al., 2013; Kim and Alger, 2004; Slanina and Schweitzer, 2005). Interestingly, 

recent work has also demonstrated P21-associated kinase enhances tonic AEA signaling at 

hippocampal GABAergic synapses by reducing synaptic COX-2 levels and subsequent 

decreases in COX-2-mediated inactivation of AEA signaling (Xia et al., 2016).

These findings indicate COX-2 regulation of eCB signaling represents an alternative 

mechanism to achieve eCB augmentation for therapeutic purposes, including in anxiety 

disorders. It is import to note in this regard that initial studies into COX-2 eCB-regulation 

have typically used traditional COX-2 inhibitors which, although selective for COX-2 over 

COX-1, inhibit the ability of COX-2 to oxidize AA, as well as eCBs, and thereby elevate 

levels of both substrates. This pharmacological property can be avoided by substrate-

selective COX-2 inhibitors (SSCIs), which block eCB oxidation without attendant actions on 

AA (Duggan et al., 2011; Hermanson et al., 2014; Windsor et al., 2012; Windsor et al., 

2013). Utilizing both SSCIs and traditional COX-2 inhibitors, two preliminary studies have 

now examined the role of COX-2 in rodent anxiety-related behaviors. In the first report, 

systemic administration of the prototypic SSCI, LM-4131, was found to decrease mouse 

anxiety-like behavior in a range of assays (open field, light-dark exploration, elevated plus-

maze) (Hermanson et al., 2013). Subsequent work showed that LM-4131, as well as two 

traditional COX-2 inhibitors, Lumiracoxib and Celecoxib, produced an anxiolytic-like effect 

in the novelty-induced hypophagia test in mice that had been subjected to acute foot-shock 

stress eight to twenty-four hours earlier (Gamble-George et al., 2016). Drug effects 

generalized across assays (elevated plus-maze, conditioned fear), sexes and ages, and were 

maintained under conditions of repeated stress or drug treatment - consistent with a robust 

anxiolytic-like action that was resistant to tolerance. Of further note, none of the drugs tested 

affected sucrose preference or tail-suspension test immobility, two measures associated more 

with antidepressant than anxiolytic efficacy.

These findings demonstrate that SSCIs and traditional COX-2 inhibitors alike, exert 

anxiolytic-like effects under a range of conditions, but are they functionally related to 

recruitment of the eCB system? The answer is probably not straightforward. On the one 

hand, the anxiolytic-like effects of LM-4131 were fully prevented (in the light-dark 

exploration test) by co-administration of a CB1R antagonist - consistent with eCB-

dependency of the COX-2 inhibitor’s effects (Hermanson et al., 2013). On the other hand, 

the ability of LM-4131 and Lumiracoxib to decrease stress-induced measures of anxiety-

related behavior in the novelty-induced hypophagia test was not blocked by a CB1R 

antagonist or, for that matter, a TRPV1 or CB2R antagonist (Gamble-George et al., 2016). 

By contrast, the effects of LM-4131 could be prevented by administration of the small-

conductance calcium activated (SK) potassium channel blocker, Apamin, and were 

mimicked by administration of the SK channel activator 1-EBIO (Gamble-George et al., 

2016). Taken together, these preliminary findings suggest that under unstressed conditions, 

COX-2 inhibitors exert anxiolytic-like effects via CB1R-mediated eCB signaling but, 
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following exposure to stress, these effects become uncoupled from this canonical 

mechanism of action.

This may be not end the story, however, because SK may itself be a molecular target of AEA 

(Wang et al., 2011). Furthermore, blocking COX-2 will limit the production of the active 

oxidative metabolites of AEA (prostaglandin-Gs) and 2-AG (prostaglandin-EAs), that are 

posited to exert their own effects at as yet to be determined receptors (Hu et al., 2008; Sang 

et al., 2006; Yang and Chen, 2008). This raises the intriguing possibility that the 

aforementioned anti-anxiety/anti-stress properties of AEA may, under certain conditions, be 

in part signaled through SK and other non-CB1R signaling pathways that COX-2 inhibitors 

access. While the research into this and other anxiety-related facets of COX-2 remains at an 

early stage, the observations to date encourage further investigation. And looking beyond the 

preclinical research, the question of whether COX-2 inhibition could represent a plausible 

approach to treating anxiety disorders is essentially untouched. Clinical investigation of the 

potential anxiolytic efficacy of traditional COX-2 inhibitors could proceed relatively rapidly, 

however, in view of the fact that Lumiracoxib and Celecoxib are currently approved as anti-

inflammatory medications.

eCB receptors: vive la difference!

CB1R is the most prominent eCB binding site in the brain. The receptor is prominently 

expressed in various neuronal subpopulations, but also in astroglia and intracellular 

organelles, such as mitochondria (Busquets-Garcia et al., 2015). The latter classes of CB1R 

are particularly interesting in view of recent evidence for glial (Han et al., 2012) and 

mitochondrial CB1R (Hebert-Chatelain et al., 2016) in eCB-mediated mnemonic processes, 

together with a known role for astrocytes (Oliveira et al., 2015) and mitochondria (Manji et 

al., 2012) in stress- and anxiety-related processes. But looking beyond the CB1R, eCBs 

exert actions at a number of other, less prominent sites, including the CB2R and TRPV1 

(Figure 3), either one of which could conceivably be involved in anxiety.

For some time, the CB2R was thought to be confined to immune cells and absent from the 

central nervous system (CNS) (Atwood et al., 2012; Fernandez-Ruiz et al., 2007; Parolaro, 

1999), but this was later found to be questionable given the lack of specificity of the 

antibodies used (Ashton, 2012; Baek et al., 2013). Whether mediated via CB2R in the brain 

or periphery, ectopic genetic overexpression CB2R in mice (Racz et al., 2008) may mitigate 

behavioral reactions to chronic stress (Garcia-Gutierrez et al., 2010). Also of note are studies 

showing that genetic and pharmacological manipulations of CB2R function in rodents alters 

social interaction and aggression (Rodriguez-Arias et al., 2015), inhibitory avoidance 

learning (Garcia-Gutierrez et al., 2013; Ortega-Alvaro et al., 2011) and prepulse inhibition 

of the startle response (Ishiguro et al., 2010; Ortega-Alvaro et al., 2011). A potential link 

between variants in the human CNR2 and major depression (Onaivi et al., 2008) has also 

been proposed. One hypothesis is that, given the role of the immune system in the etiology 

of various psychiatric diseases (Hodes et al., 2015; Yirmiya et al., 2015), CB2Rs expressed 

on immune cells, specifically microglia (Boorman et al., 2016), may underlie behavioral 

effects of CB2R manipulations. A recently generated conditional CB2R mutant mouse 
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(Stempel et al., 2016) will serve to test this hypothesis by selectively deleting CB2R on 

microglia or neurons.

As was the case for CB2R, CNS expression of the non-selective cation channel TRPV1 had 

been disputed for some time. Mouse reporter lines generated to visualize TRPV1 found 

distinct and sparely distribution of TRPV1-positive neurons in anxiety-mediating brain areas 

including the periaqueductal grey (PAG), hypothalamus and hippocampus (Cavanaugh et al., 

2011). However, functional expression may be underestimated if TRPV1 is expressed post 

and presynaptically (Aguiar et al., 2014) and acts far away from its synthesis sites 

(Gutierrez-Rodriguez et al., 2016; Ruehle et al., 2013). Indeed, there are additional reports 

of TRPV1 expression in the bed nucleus of the stria terminalis (BNST) (Puente et al., 2011), 

hippocampal dentate gyrus (Canduela et al., 2015; Lee et al., 2015; Puente et al., 2015) and 

hippocampal CA1 region (Lee et al., 2015) in postsynaptic terminals of both inhibitory 

(Canduela et al., 2015; Lee et al., 2015) and excitatory synapses (Puente et al., 2011; Puente 

et al., 2015). There is also evidence of presynaptic expression of TRPV1 in the nucleus 

tractus solitarus and PAG (Kawahara et al., 2011).

Consistent with its expression in anxiety-related regions of the brain, there is growing 

indication that TRPV1 acts as a ionotropic counterpart to the CB1R resulting in the 

promotion of fear- and anxiety-related responses in rodents (Aguiar et al., 2014; Casarotto et 

al., 2012; Marsch et al., 2007; Moreira et al., 2012; Terzian et al., 2009; Uliana et al., 2016). 

One scenario is that anxiety-related behaviors result from a balance between eCB-mediated 

inhibition (via CB1R) and excitation (via TRPV1) of anxiety-mediating circuits that, when 

operating correctly, serves as a system for switching between passive (e.g., freezing) and 

active (e.g., escape) behavioral responses based on the proximity of threat (Almeida-Santos 

et al., 2013; Casarotto et al., 2012). However, dysregulation of this TRPV1/CB1R balance 

could result in excessive anxiety and deficient stress-coping. Clarifying this issue requires 

careful analyses of behavior in preclinical assays in view of the contribution of brain and 

peripheral TRPV1 in motor behaviors and vegetative functions (Garami et al., 2011; Hudson 

et al., 2016).

Another key issue is the upstream mechanism(s) that generate signaling through TRPV1 to 

affect anxiety-related behaviors. One plausible route, given the extensive literate reviewed 

above, may be through AEA, which serves as full agonist at both CB1R and TRPV1 albeit 

with different affinity (Zygmunt et al., 1999). Postsynaptically-released AEA would bind 

presynaptically- and postsynaptically-located TRPV1 in a retrograde and anterograde 

manner, respectively. In addition, in view of the potential for AEA to be synthesized 

presynaptically (given the presynaptic presence of the rate-limiting AEA-synthesizing 

enzyme, NAPE-PLD) (Nyilas et al., 2008), AEA of presynaptic origin could also bind 

presynaptic TRPV1 (Puente et al., 2011). To help dissect these alternate modes of AEA-

mediated TRPV1 signaling in anxiety, future studies will benefit from the availability of 

photoswitchable TRPV1 agonists and antagonists (Frank et al., 2015; Stein et al., 2013), 

short-hairpin RNAs to downregulate TRPV1 in a temporally and spatially restricted manner 

(Hirai et al., 2014) and conditional TRPV1 null mutants (pending).
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There are then important issues to address regarding the suitability of TRPV1-targeting 

drugs for clinical use in anxiety disorders. As the available evidence suggests that effects at 

TRPV1 appear to be in opposition to the (anti-anxiety-like) behavioral actions exerted 

through CB1R (Kawahara et al., 2011), one avenue might be to develop compounds that 

block TRPV1 and at the same time inhibit FAAH (to stimulate CB1R), such that elevations 

in AEA and signaling at CB1R is not offset by TRPV1 activation. N-arachidonoyl-serotonin 

(AA-5-HT) may be a useful example of such a dual mode of action that can guide work in 

this area (Micale et al., 2009; Navarria et al., 2014).

CBD: the other THC

An issue that complicates the potential therapeutic utility of eCB-targeting drugs is that 

cannabis does not reliably reduce anxiety and can even induce anxiety in normals and 

increase symptom severity in PTSD patients (Cougle et al., 2011). These variable effects 

appear to be highly dependent on the individual and the context the drug is taken, but yet 

remain poorly understood. Some researchers have attributed this to a downregulation of the 

eCB signaling system (Hirvonen et al., 2012), resulting in tolerance to the drug’s anti-

anxiety effects and, in some cases, an unmasking of pro-anxiety properties. An alternative, 

though not necessarily mutually exclusive, view is that the anxiolytic effects of cannabis 

depend upon the neurobiological interplay or ratiometric relationship between the two major 

phytocannabinoids found in the cannabis plant, THC and CBD. There remains a relative 

dearth of data examining the anxiety-related actions of CBD and a lack of knowledge about 

how CBD’s effects are modulated by THC and the other phytocannabinoids found in 

cannabis – a pharmacological phenomenon referred to as the entourage effect.

However, several clinical reports have documented anxiolytic effects of CBD. For instance 

CBD reverses THC-induced anxiety (Zuardi et al., 1982) and glossophobia (fear of public 

speaking) (Bergamaschi et al., 2011; Crippa et al., 2004; Zuardi et al., 1993), and attenuates 

regional brain reactivity to fear-inducing stimuli in functional magnetic resonance imaging 

studies (Crippa et al., 2004; Fusar-Poli et al., 2010). The rodent literature arising from 

studies by Guimãraes and colleagues and other groups aligns quite well with these data. 

Systemic administration of CBD in rats exerts anxiolytic-like effects in the elevated plus-

maze (Campos and Guimaraes, 2008; Campos et al., 2013b; Gomes et al., 2012; Guimaraes 

et al., 1990; Onaivi et al., 1990; Schiavon et al., 2016), Vogel conflict test (Campos and 

Guimaraes, 2008; Gomes et al., 2012; Moreira et al., 2006) and marble-burying test (in 

mice) (Casarotto et al., 2010), and reduces conditioned contextual fear (Resstel et al., 2006). 

Similar effects can be produced by microinjections of CBD into brain regions including the 

central nucleus of the amygdala (Hsiao et al., 2012), bed nucleus of the stria terminalis 

(BNST) (Gomes et al. 2010, 2012), and dorsal periaqueductal gray (dPAG) (Campos and 

Guimaraes 2008). The anti-anxiety properties of CBD do, however, appear to be dose-

dependent, with efficacy inversely correlated with dose (Guimaraes et al., 1990).

The mechanisms by which CBD confers its anxiolytic effects remain undetermined. CBD 

exhibits little to no orthosteric binding potential at CB1R or CB2R and can, under certain 

conditions, effectively antagonize the receptors even at low nM concentrations (Russo, 

2011). As such, CBD has been termed a negative allosteric modulator at CB1R (Laprairie et 
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al., 2015), a pharmacological property that might explain how CBD could attenuate several 

effects of THC, which itself acts as a CB1R partial agonist. In addition, CBD is a TRPV1 

agonist with an affinity for the receptor similar to the irritant substance found in chili 

peppers, capsaicin (Bisogno et al., 2001), but lacks the pain-inducing properties of capsaicin 

and can potently desensitize TRPV1 even at low concentrations (Bisogno et al., 2001). 

Given the aforementioned evidence implicating TRPV1 in the regulation of fear and anxiety, 

it will be of significant interest to examine the potential interactions between CBD and this 

receptor.

Beyond its actions at CB1R and TRPV1, CBD can actually affect signaling at a staggering 

number of pathways that could feasibly impact anxiety (Russo, 2016). For instance, CBD is 

an inhibitor of adenosine uptake and facilitation of adenosine signaling produces anxiolytic-

like effects (Carrier et al., 2006). Another CBD-target of particular interest is the 5-

hydroxytryptamine 1A receptor subtype (5-HT1A-R) - a metabotropic seven-transmembrane 

receptor, negatively-coupled to G proteins (Gi/Go), that has been the subject of interest for 

its anti-anxiety properties for decades (Holmes, 2008). CBD rapidly increases extracellular 

serotonin and glutamate levels in mouse cortex (Llado-Pelfort et al., 2012) and amplifies 5-

HT1A-R-mediated inhibition of GABAergic interneurons (Santana et al., 2004) to disinhibit 

glutamatergic output in downstream structures (Llado-Pelfort et al., 2012). This in turn is 

likely to augment activity at 5-HT neurons in the dorsal raphe nucleus (DRN) (Llado-Pelfort 

et al., 2012), enhancing 5-HT in corticolimbic projection fields to complete a system-level 

functional loop. Finally, there are also potential effects of CBD activation of 5-HT1A-Rs 

located on interneurons proximal to the DRN, as well as effects on 5-HT1A-Rs expressed on 

DRN 5-HT neurons themselves. Thus, the interplay between CBD and the 5-HT system is 

likely to be highly complex and to occur at multiple levels.

Nevertheless, there is initial evidence supporting a functional connection between CBD and 

the 5-HT1A-R in regulating anxiety-like behavior. The anxiolytic-like effects produced by 

CBD injections into the rat infralimbic (Marinho et al., 2015) or prelimbic (Fogaca et al., 

2014) cortices, BNST (Gomes et al., 2013; Gomes et al., 2012; Gomes et al., 2011) and 

dPAG (Campos et al., 2013a) are attenuated by concomitant 5-HT1A-R antagonism. One 

potential explanation for this interaction is that CBD could work as a positive allosteric 

enhancer of 5-HT1A–R. This would mean that for CBD to be fully effective as an anxiolytic 

there would need to be basal 5-HT1A-R occupancy (Rock et al., 2012). This is notable 

because 5-HT1A-R agonists, such as Buspirone, display also anxiolytic-like properties in 

assorted preclinical assays (e.g., Roncon et al., 2013; Saito et al., 2013; Zhou et al., 2014) 

and are clinically prescribed for various Anxiety Disorders, with reasonable response rates 

(Blessing et al., 2015; Chessick et al., 2006). Thus, one could envision a treatment strategy 

entailing the use of CBD as an adjunct that augment Buspirone efficacy via the two drugs 

additive or synergistic action at the 5-HT1A-R. An added benefit would be that the limited 

psychoactive profile of CBD, as compared to, for instance, THC, should produce fewer side-

effects. The next step will be to begin testing these predictions in the clinic and parallel 

preclinical assays.
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Concluding remarks

There is growing interest in the eCB system as a target for anxiety, trauma and stress-related 

disorders based on a burgeoning preclinical and clinical literature that supports a relationship 

between eCBs and fear, anxiety and stress. In the current mini-review, we have sought to 

highlight some of the main pathways to exploiting the eCB system as a means of generating 

novel pharmacotherapeutics for these disorders. These include the notion of augmenting the 

on-demand recruitment of AEA and 2-AG, either by inhibiting the hydrolyzing enzymes, 

fatty acid amide hydrolyze (FAAH) and monoacylglycerol lipase (MAGL), or by targeted 

inhibition of cyclooxygenase-2 (COX-2). Alternatively, blocking the activation of TRPV1 

receptors, possibly in concert with the augmentation of AEA, could be an effective route to 

alleviating excessive anxiety and promoting stress-coping. Lastly, there is the possibility of 

utilizing the constituent of cannabis, CBD, to treat anxiety and stress-related disorders, albeit 

via neural mechanisms that might be independent of eCB signaling. Further basic research 

together with well-designed clinical studies, over the coming years will determine how 

successfully these various promising approaches evolve into much needed medications.
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Highlights

• The endocannabinoid (eCB) system is a therapeutic target for anxiety 

disorders.

• We highlight components of the eCB system that offer potential ‘druggable’ 

targets for new anxiolytic medications.

• Amplifying eCBs recruitment by interfering with eCB-degradation, via fatty 

acid amide hydrolyze (FAAH) and monoacylglycerol lipase (MAGL), is 

linked to reductions in anxiety-like behaviors.

• A non-canonical route to regulate eCB degradation and anxiety involves 

interfering with cyclooxygenase-2 (COX-2).

• Anxiety behavior can also be affected by targeting the CB2R subtype and the 

transient receptor potential vanilloid receptor type 1 (TRPV1).

• Cannabidiol (CBD) represents another plausible path to modulating eCBs to 

alleviate anxiety.
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Figure 1. The burgeoning literature linking the eCB system and anxiety
PubMed citation results for ‘cannabinoid and anxiety’ from 1990 to 2015.
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Figure 2. Potential therapeutic approaches targeting the eCB system to alleviate anxiety
By increasing AEA levels, FAAH inhibitors modulate transmitter release and produce anti-

anxiety effects, particularly under conditions of stress. COX-2 inhibitors lead to 

accumulation of AEA levels and can exert similar behavioral effects as FAAH inhibitors. 

Blockade of eCB activity at TRPV1 may produce anti-anxiety effects by modulation 

presynaptic and postsynaptic signaling. Finally, CBD has a diversity of anxiety-alleviating 

effects that have been related to activity at 5-HT1AR and adenosine update, as well as CB1R 

and potentially TRPV1. 5-HT1AR=5-HT1A receptor, AA=arachidonic acid, 

AEA=anandamide, AA=Glyc=AA+Glycine, CB1R=cannabinoid type 1 receptor, 

CBD=cannabidiol, DGL=diacylglycerol lipase, COX-2=cyclooxygenase-2, 

EA=ethanolamide, FAAH=fatty acid amide hydrolase, MAGL=monoacylglycerol lipase, 

NAPE PLD=N-acyl phosphatidylethanolamine-specific phospholipase D, NAT=N-

acyltransferase, PG-EA=prostaglandin ethanolamide, PG-Glyc=prostaglandin-glycerol, 

PLC=protein lipase C, SK=SK channel, TRPV1=transient receptor potential vanilloid 

receptor type 1.
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Figure 3. Role of TRPV1 in eCB signaling
AEA may serve as an endogenous ligand for both CB1R and TRPV1, with activation of 

CB1R on presynaptic terminals leading to attenuated transmitter release. Activation of 

TRPV1 leads to enhanced transmitter release (if expressed presynaptically) or promotes 

depolarization of the postsynaptic terminal (if expressed postsynaptically). The relative roles 

of TRPV1 and CB1R on glutamatergic versus GABAergic terminals may depend on the 

concentration of the ligand. At low concentrations, endogenous and exogenous eCBs exert 

anxiolytic-like effects via CB1R on glutamatergic terminals (partially due to the more 

efficient G-protein coupling of CB1R on glutamatergic terminals). At higher concentrations, 

TRPV1 activation may render anxiety-related circuitry resistant to CB1R-mediated fine-

tuning of glutamate release and eCBs may act in a paracrine manner at CB1R on 

GABAergic terminals to reduce inhibitory drive. The contribution of glial cells to eCB-

mediated anxiety-like behavior remain to be elucidated. AEA=anandamide, 

CB1R=cannabinoid type 1 receptor, CB1R=cannabinoid type 2 receptor, FAAH=fatty acid 

amide hydrolase, mGluR=metabotropic glutamate receptor, mtCB1R=mitochondria-
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expressed cannabinoid type 1 receptor, NAPE PLD=N-acyl phosphatidylethanolamine-

specific phospholipase D, TRPV1=transient receptor potential vanilloid receptor type 1.
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